Quantum quadratic-attractive plus quartic repulsive potential in a box

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 1573
(http://iopscience.iop.org/0305-4470/15/1/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:51

Please note that terms and conditions apply.

Quantum quadratic-attractive plus quartic-repulsive potential in a box \dagger

V C Aguilera-Navarro \ddagger, E Ley Koo $\ddagger \S$, A H Zimerman \ddagger and H Iwamotol
\ddagger Instituto de Física Teórica, Rua Pamplona, 145—CEP 01405-São Paulo, Brasil
$\|$ Departamento de Física da FUEL, Londrina, Brasil

Received 20 May 1981

Abstract

The solution of the Schrödinger equation for the two-well oscillator in a symmetric box is formulated exactly, and high-accuracy numerical results are obtained for the lowest states. Perturbative solutions for boxes whose walls are (i) fairly close to each other, (ii) in the vicinity of the inflection points of the potential, (iii) at the position of the minima of the potential, and (iv) very far from each other are also obtained and compared with the exact ones.

1. Introduction

Some time ago Banerjee and Bhatnagar (1978) investigated the two-well oscillator

$$
\begin{equation*}
V(x)=-\frac{1}{2} k x^{2}+\frac{1}{2} \lambda x^{4} \tag{1}
\end{equation*}
$$

by a non-perturbative method and in the wKB approximation. They also argued why the problem does not admit of a straightforward perturbative solution. Recently, Killingbeck (1981) has considered the same problem. In contrast, we show in the present paper that the modified problem of the two-well oscillator in a symmetric box, with the potential of equation (1) inside the box $(|x|<R)$ and an infinite potential outside the box $(|x|>R)$, admits of an exact solution as well as perturbative solutions.

We use the reduced Hamiltonian

$$
\begin{equation*}
H(k=1, \lambda)=\frac{1}{2}\left(p^{2}-x^{2}+\lambda x^{4}\right) \tag{2}
\end{equation*}
$$

and impose the boundary condition on the wavefunctions

$$
\begin{equation*}
\psi(|x|=R)=0 \tag{3a}
\end{equation*}
$$

at the position of the walls. Furthermore, since the Hamiltonian is even under reflection, $H(x)=H(-x)$, its eigenfunctions have a well defined parity. We can restrict the problem to the interval $0 \leqslant x \leqslant R$, by introducing the corresponding boundary condition at the origin,

$$
\begin{equation*}
\left.\frac{\mathrm{d} \psi^{(+)}}{\mathrm{d} x}\right|_{x=0}=0 \tag{3b}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\psi^{\prime-1}(x=0)=0 \tag{3c}
\end{equation*}
$$

\]

for the even and odd wavefunctions, respectively.
An exact solution of the eigenvalue problem can be formulated by using the expansions of the wavefunctions,

$$
\begin{align*}
& \psi_{m}^{(+1)}(x)=\sum_{n=0}^{\infty} c_{m n}^{(+)} \phi_{n}^{(+)}(x) \tag{4a}\\
& \psi_{m}^{(-)}(x)=\sum_{n=0}^{\infty} c_{m n}^{(-)} \phi_{n}^{(-)}(x) \tag{4b}
\end{align*}
$$

in terms of the complete orthonormal bases of eigenfunctions of the free particle in the box.

$$
\begin{align*}
& (n+)=\phi_{n}^{(+)}(x)=R^{-1 / 2} \cos [(2 n+1) \pi x / 2 R] \tag{5a}\\
& \mid n-)=\phi_{n}^{(-)}(x)=R^{-1 / 2} \sin (n \pi x / R) \tag{5b}
\end{align*}
$$

which obviously satisfy the boundary conditions of equations ($3 a$), and ($3 b$) and ($3 c$), respectively. Then the expansion coefficients $\varepsilon_{m n}^{(\pm)}$and the eigenvalues $\varepsilon_{m}^{(\pm)}$are obtained from the diagonalisation of the corresponding matrices of the Hamiltonian, ($n^{\prime} \pm|H| n \pm$), which are explicitly constructed in § 2 . In principle, the sums in equations (4a) and (4b) involve an infinite number of terms, but in practice we can use a finite number of them and test the convergence and accuracy of the numerical results.

In $\S 3$, we develop perturbative solutions for boxes whose walls are (i) fairly close to each other, $R<1$, taking the free particle in the box as the unperturbed system, (ii) in the vicinity of the points of inflection of the potential, $R \approx(6 \lambda)^{-1 / 2}$, taking the linear potential as the unperturbed system, (iii) at the position of the minimum of the potential, $R=(2 \lambda)^{-1 / 2}$, taking the half-oscillator potential as the unperturbed system, and (iv) very far from each other, $R \gg \lambda^{-1 / 2}$, taking the harmonic oscillator potential as the unperturbed system.

Our numerical results are presented in $\S 4$. The exact results illustrate how the degeneracy of the lowest states, by pairs, sets in as the separation of the walls is increased, especially for very small values of λ. Comparison of the perturbative and exact solutions allows us to ascertain the validity of the former.

2. Formulation of the exact solution

It is straightforward to construct the matrices of the Hamiltonian equation (2) in the bases of equations ($5 a$) and ($5 b$), respectively,

$$
\begin{align*}
\left(n^{\prime}+|H| n+\right)= & \left\{(2 n+1)^{2} \pi^{2} / 8 R^{2}-\left[\frac{1}{6}-(2 n+1)^{-2} \pi^{-2}\right] R^{2}\right. \\
& \left.+\frac{1}{2}\left[\frac{1}{5}-4(2 n+1)^{-2} \pi^{-2}+24(2 n+1)^{-4} \pi^{-4}\right] \lambda R^{4}\right\} \delta_{n^{\prime} n} \\
& +\llbracket\left[\left(n+n^{\prime}+1\right)^{-2}-\left(n-n^{\prime}\right)^{-2}\right](-1)^{n-n^{\prime}} \pi^{-2} R^{2} \\
& -\left\{\left[\left(n+n^{\prime}+1\right)^{-2}-\left(n-n^{\prime}\right)^{-2}\right] 4 \pi^{-2}\right. \\
& \left.\left.-\left[\left(n+n^{\prime}+1\right)^{-4}-\left(n-n^{\prime}\right)^{-4}\right] 24 \pi^{-4}\right\} \frac{1}{2}(-1)^{n-n^{\prime}} \lambda R^{4}\right]\left(1-\delta_{n^{\prime} n}\right) \tag{6a}
\end{align*}
$$

$$
\begin{align*}
\left(n^{\prime}-|H| n-\right)= & \left\{n^{2} \pi^{2} / 2 R^{2}-\left[\frac{1}{6}-(2 n)^{-2} \pi^{-2}\right] R^{2}\right. \\
& \left.+\frac{1}{2}\left[\frac{1}{5}-4(2 n)^{-2} \pi^{-2}+24(2 n)^{-4} \pi^{-4}\right] \lambda R^{4}\right\} \delta_{n^{\prime} n} \\
& +\llbracket\left[\left(n+n^{\prime}\right)^{-2}-\left(n-n^{\prime}\right)^{-2}\right](-1)^{n-n^{\prime}} \pi^{-2} R^{2} \\
& -\left\{\left[\left(n+n^{\prime}\right)^{-2}-\left(n-n^{\prime}\right)^{-2}\right] 4 \pi^{-2}-\left[\left(n+n^{\prime}\right)^{-4}-\left(n-n^{\prime}\right)^{-4}\right] 24 \pi^{-4}\right\} \\
& \left.\times \frac{1}{2}(-1)^{n-n^{\prime}} \lambda R^{4} \mathbb{}\right]\left(1-\delta_{n^{\prime} n}\right) . \tag{6b}
\end{align*}
$$

In these equations, it is easy to recognise the diagonal and non-diagonal contributions of the kinetic energy, quadratic and quartic terms in the Hamiltonian.

In the matrix representation, the solution of the eigenvalue problem is reduced to the solution of the secular equations

$$
\begin{equation*}
\operatorname{det}\left|H_{n^{\prime} n}^{(\pm)}-\varepsilon^{(\pm)} \delta_{n^{\prime} n}\right|=0 \tag{7}
\end{equation*}
$$

However, as already mentioned in $\S 1$, the matrices are of infinite dimension and in practice we work with submatrices of finite dimensions, testing the convergence and accuracy of the numerical results as the dimensions are increased.

3. Perturbative solutions

The two-well potential, equation (1), has zeros at $x=0, \pm(k / \lambda)^{1 / 2}$, minima at $x=$ $\pm(k / 2 \lambda)^{1 / 2}$, and inflection points at $x= \pm(k / 6 \lambda)^{1 / 2}$. Next, we develop perturbative solutions for boxes whose walls are located in the vicinity of such points. We pay special attention to the interesting situation of very small values of λ.

3.1. Very small boxes, $R<1$

We take the free particle in the box, i.e. the kinetic energy term in equation (2) and its eigenfunctions of equations ($5 a$) or ($5 b$), as the unperturbed system, so that the potential itself, equation (1), is the perturbation. The matrix elements of equations ($6 a$) and ($6 b$) can be used directly to obtain the explicit forms of the Rayleigh-Schrödinger perturbation expansion

$$
\begin{align*}
\varepsilon_{N}^{s}=N^{2} \pi^{2} / 8 & R^{2}-\left(\frac{1}{6}-N^{-2} \pi^{-2}\right) R^{2}+\frac{1}{2}\left(\frac{1}{5}-4 N^{-2} \pi^{-2}+24 N^{-4} \pi^{-4}\right) \lambda R^{4} \\
& -2 S_{1} \pi^{-6} R^{6}+16 \lambda S_{2} \pi^{-6} R^{8}+\left[16\left(\frac{1}{6}-N^{-2} \pi^{-2}\right) \pi^{-8} S_{10}\right. \\
& \left.-8 \pi^{-10} S_{4}-8 \pi^{-8} S_{5}-32 \lambda^{2} \pi^{-6} S_{3}\right] R^{10} \\
& +8\left[4\left(2 S_{6}+S_{7}\right) \pi^{-2}+8 S_{8}+S_{9}-\left(\frac{1}{5}-4 N^{-2} \pi^{-2}+24 N^{-4} \pi^{-4}\right) S_{10}\right. \\
& \left.-16\left(\frac{1}{6}-N^{-2} \pi^{-2}\right) S_{11}\right] \lambda \pi^{-8} R^{12} \tag{8}
\end{align*}
$$

where

$$
N=\left\{\begin{array}{lll}
2 n+1 & \text { for even-parity states, } & n=0,1,2, \ldots \\
2 n & \text { for odd-parity states, } & n=1,2,3, \ldots
\end{array}\right.
$$

The $S_{i}(i=1, \ldots, 11)$ are defined in the Appendix. In the expression (8) we have kept terms up to R^{12}.
3.2. Boxes whose walls are in the vicinity of the inflection points, $R \approx(6 \lambda)^{-1 / 2}$

In this case, we work in the interval $-R \leqslant x \leqslant 0$, and make the change of variable $y=x+R$. Then the Hamiltonian becomes

$$
\begin{align*}
& H=-\frac{1}{2} \mathrm{~d}^{2} / \mathrm{d} y^{2}-\frac{1}{2}(y-R)^{2}+\frac{1}{2} \lambda(y-R)^{4} \\
&=-\alpha(\lambda, R)-\frac{1}{2} \mathrm{~d}^{2} / \mathrm{d} y^{2}+\frac{1}{2} \beta^{3}(\lambda, R) y-\frac{1}{2} \gamma(\lambda, R) y^{2}-2 \lambda R y^{3}+\frac{1}{2} \lambda y^{4}, \tag{9a}
\end{align*}
$$

where

$$
\begin{align*}
& \alpha(\lambda, R)=\frac{1}{2}\left(R^{2}-\lambda R^{4}\right) \tag{9b}\\
& \beta^{3}(\lambda, R)=2 R-4 \lambda R^{3} \tag{9c}\\
& \gamma(\lambda, R)=1-6 \lambda R^{2} \tag{9d}
\end{align*}
$$

For fixed values of λ and R, the term in α is fixed and gives the value of the potential at the position of the walls. The next two terms in equation ($9 a$) correspond to the Hamiltonian for a linear potential, which we take as the unperturbed system. Then the perturbation includes the quadratic, cubic and quartic terms.

For small values of λ, the boxes under consideration are rather large, and the degeneracy of the lowest pairs of even-odd states already appears. Thus, we will refer to both members of the pair simultaneously. Also, the interval of y can be taken as infinite since its values go from 0 to $R \gg 1$. Then the eigenfunctions of the unperturbed system are the regular Airy functions $\mathrm{Ai}\left(\beta y-2 \varepsilon^{(0)} / \beta^{2}\right.$) (Abramowitz and Stegun 1971), subject to the boundary condition of vanishing at the wall, i.e. for $y=0$ which determines the unperturbed eigenvalues,

$$
\begin{equation*}
\varepsilon_{n}^{(0)}=-\frac{1}{2} \beta^{2} a_{n} . \tag{10a}
\end{equation*}
$$

in terms of the zeros of such functions. Let us recall that those zeros are negative, so that the eigenvalues are positive. Notice that in practice these Airy functions also satisfy both boundary conditions at the centre of the box, equations (3b) and (3c), for $y=R \rightarrow \infty$.

The coefficient γ of the quadratic term is very close to zero, while the coefficients of the cubic and quartic terms are also very small, being of order $\lambda^{1 / 2}$ and λ, respectively. Therefore, we limit our calculation to first order in the perturbation, for which we need the expectation values of the second, third and fourth powers of y with the Airy functions. We take these directly from (Castilho Alcarás and Leal Ferreira 1975)

$$
\begin{align*}
& \left\langle y^{2}\right\rangle_{n}=8\left(a_{n} / \beta\right)^{2} / 15, \tag{10b}\\
& \left\langle y^{3}\right\rangle_{n}=\left(\frac{16}{35}+\frac{3}{7}\left|a_{n}\right|^{-3}\right)\left(\left|a_{n}\right| / \beta\right)^{3}, \tag{10c}\\
& \left\langle y^{4}\right\rangle_{n}=\left(\frac{128}{315}+\frac{80}{63}\left|a_{n}\right|^{-3}\right)\left(a_{n} / \beta\right)^{4} . \tag{10d}
\end{align*}
$$

Then we obtain the perturbative solutions

$$
\begin{equation*}
\varepsilon_{n}:-\alpha+\frac{1}{2} \beta^{2}\left|a_{n}\right|-\frac{4}{15} \gamma\left(a_{n} / \beta\right)^{2}-\frac{2}{7} \lambda R\left(\frac{16}{5}+3\left|a_{n}\right|^{-3}\right)\left(\left|a_{n}\right| / \beta\right)^{3}+\frac{8}{63} \lambda\left(\frac{8}{5}+5\left|a_{n}\right|^{-3}\right)\left(a_{n} / \beta\right)^{4}, \tag{11}
\end{equation*}
$$

to be compared with the lowest states $\varepsilon_{n-1}^{(+)} \approx \varepsilon_{n}^{(-)}$for $n=1,2, \ldots$ and $R \approx(6 \lambda)^{-1 / 2}$.
3.3. Boxes whose walls are at the position of the minima, $R=(2 \lambda)^{-1 / 2}$

This time we make the change of variable $z=x-(2 \lambda)^{-1 / 2}$, and the Hamiltonian becomes

$$
\begin{align*}
H & =-\frac{1}{2}\left(\mathrm{~d}^{2} / \mathrm{d} z^{2}\right)-\frac{1}{2}\left[z+(2 \lambda)^{-1 / 2}\right]^{2}+\frac{1}{2} \lambda\left[z+(2 \lambda)^{-1 / 2}\right]^{4} \\
& =-1 / 8 \lambda-\frac{1}{2}\left(\mathrm{~d}^{2} / \mathrm{d} z^{2}\right)+z^{2}+(2 \lambda)^{1 / 2} z^{3}+\frac{1}{2} \lambda z^{4} \tag{12}
\end{align*}
$$

Again, the first term is constant and corresponds to the value of the potential at its minima. The next two terms correspond to a harmonic oscillator of frequency $\sqrt{2}$, which here and in $\S 3.4$ we take as the unperturbed system. Then the perturbation consists of the anharmonic cubic and quartic terms. Notice that the linear term drops out because the origin has been shifted to the position of the minimum of the potential. Also, for small values of λ the boxes under consideration are even larger than those in § 3.2, so that the degeneracy of the lowest pairs of even-odd states is established, and the interval of the variable extends from $z=-(2 \lambda)^{-1 / 2} \rightarrow-\infty$ to $z=0$.

The boundary condition, equation ($3 a$), when the walls are at the position of the minima corresponds to $\psi(z=0)=0$, which means that we have to choose the odd functions of the harmonic oscillator as the unperturbed wavefunctions. Both boundary conditions at the centre of the box, equations ($3 b$) and ($3 c$), are also satisfied in practice by such functions because their gaussian exponential factors tend to vanish at $z=$ $-(2 \lambda)^{-1 / 2} \rightarrow-\infty$. Furthermore, the matrix elements of the perturbation can be directly calculated.

Since the coefficients of the cubic and quartic terms in equation (12) are of order $\lambda^{1 / 2}$ and λ, respectively, we have to be consistent in the inclusion of the terms in the perturbation series. Thus, in order to include all the terms of order λ, we take the quartic terms in first order of perturbation theory but the cubic term up to second order. This can be appreciated in the successive terms of the following expression for the lowest states:

$$
\begin{align*}
\varepsilon^{m}=-1 / 8 \lambda & +3 \sqrt{2} / 2-4(2 \lambda / \pi)^{1 / 2} 2^{-3 / 4}+15 \lambda / 16-1.958486406 \lambda \\
= & -1 / 8 \lambda+2.121320344-1.897699993 \sqrt{\lambda}-1.020986406 \lambda, \tag{13}
\end{align*}
$$

to be compared with $\varepsilon_{0}^{(+)} \approx \varepsilon_{1}^{(-)}$for $R=(2 \lambda)^{-1 / 2}$.

3.4. Very large boxes, $R \gg \lambda^{-1 / 2}$

In this case, the Hamiltonian in the form of equation (12), with the variable in the interval from $z=-(2 \lambda)^{-1 / 2} \rightarrow-\infty$ to $z=R \rightarrow \infty$, allows us to choose the complete harmonic oscillator as the unperturbed system. Again, the corresponding wavefunctions in practice satisfy the boundary conditions equations ($3 a$), ($3 b$) and ($3 c$), because of their gaussian exponential factors. In addition, since these wavefunctions and also the cubic and quartic terms in the perturbation have well defined parities, the corresponding selection rules automatically eliminate some terms in the perturbation series. For instance, in the energy of the lowest states including all the terms of order λ^{2},

$$
\begin{align*}
\varepsilon^{\prime}=-1 / 8 \lambda & +\frac{1}{2} \sqrt{2}+3 \lambda / 16-11 \lambda / 16-21 \lambda^{2} / 2^{7} \sqrt{2}+171 \lambda^{2} / 2^{6} \sqrt{2}-465 \lambda^{2} / 2^{7} \sqrt{2} \\
& =-1 / 8 \lambda+\sqrt{1 / 2}-\frac{1}{2} \lambda+(9 / 8 \sqrt{2}) \lambda^{2} \tag{14}
\end{align*}
$$

the cubic term does not contribute in first or third order by itself, but it does lower the energy in second and fourth order, while the quartic term makes a positive contribution
Table 1. Exact (variational) eigenvalues of the lowest states of the two-well oscillator in symmetric boxes of different sizes.

	R	0.1	0.5	1.0	2.0	4.0	8.0	15.0
0.01	$\varepsilon_{0}^{(+)}$	123.3694016	4.9184694	1.1679681	0.0075363488	-3.21439244	-11.5683308	-11.7979757
	$\varepsilon_{1}^{(-)}$	493.4788067	19.7039017	4.7934845	0.6426114270	-3.214363 36	-11.5683308	-11.797975 7
	$\varepsilon_{2}^{\text {t+1 }}$	1110.3289411	44.3744188	10.9488110	2.1808211116	-0.966 31919	-9.781727	-10.414903
	$\varepsilon{ }^{6,1}$	1973.9192770	78.9168090	19.5799078	4.318148131	-0.939 14267	-9.781727	-10.414903
	$\varepsilon_{4}^{(+)}$	3084.2497493	123.3294611	30.6809469	7.082911143	0.16726802	-7.987470	-9.064 956
	$\varepsilon_{5}^{(-)}$	4441.3203421	177.6119768	44.2504103	10.46908386	0.71017498	-7.987470	--9.064 956
0.20	$\varepsilon_{0}^{(+)}$	123.3694020	4.9187139	1.1719793	0.09761754792	-0.154 122690	-0.154 124483	-0.154 124825
	$\varepsilon_{1}^{(-)}$	493.4788078	19.7045795	4.8044535	0.84280368244	0.142771618	0.142765101	0.14276509
	$\varepsilon_{2}^{(+)}$	1110.3289426	44.3753571	10.9638381	2.41659718736	1.010215375	1.010188899	1.0101889
	$\varepsilon_{3}^{(-)}$	1973.9192786	78.9178517	19.5965703	4.57825674611	1.949245007	1.94913737	1.9491374
	$\varepsilon_{4}^{(+)}$	3084.2497510	123.3305546	30.6984177	7.35695487149	3.058959419	3.05856734	3.05857
	$\varepsilon_{5}^{(-)}$	4441.3203439	177.6130984	44.2683353	10.75151551654	4.289961687	4.28865866	4.28866
1.00	$\varepsilon_{0}^{(+)}$	123.36940361	4.919743045	1.188743519	0.3434241753	0.328826502	0.328826501	0.3288266
	$\varepsilon_{1}^{(-)}$	493.47881239	19.707433577	4.850433229	1.4923719094	1.417268100	1.417268099	1.417269
	$\varepsilon_{2}^{(+)}$	1110.32894893	44.379307622	11.027016336	3.332364017	3.081950626	3.08195062	3.08196
	$\varepsilon_{3}^{(-)}$	1973.9192856	78.922242156	19.666726856	5.661517480	5.019323058	5.01932305	5.0194
	$\varepsilon_{4}^{(+)}$	3084.2497584	123.335158718	30.772007695	8.52986178	7.186203249	7.18620324	7.186
	$\varepsilon_{5}^{(-)}$	4441.3203514	177.61782138	44.343843546	11.97041604	9.54285934	9.54285733	9.543

in first order and a negative one in second order. In addition, both the cubic and quartic terms combine the products of two matrix elements of the former with one of the latter to make a positive contribution in third order. The energies in equation (14) are to be compared with $\varepsilon_{0}^{(+)} \approx \varepsilon_{1}^{(-)}$for $R \gg \lambda^{-1 / 2}$.

4. Numerical results and discussion

In this section, we discuss illustrative samples of the numerical results obtained with the several approximations in each region in which the original problem was separated. Comparison with the exact (variational) results is also made through the tables.

In table 1 , we present the exact results for the first six energy levels, for several values of R and λ. We have used different dimensions for the matrices (6) to be diagonalised, namely, for $R \leqslant 1$ and $\lambda=0.01,0.20$ we diagonalised matrices of dimensions up to 10 ; for $R>1$, we diagonalised matrices of dimensions up to 35 , for all values of λ considered; finally, for $R \leqslant 0.5$ and $\lambda=1$, the greatest dimension was taken as 25 . We used different dimensions in order to ensure convergence of the eigenvalues up to the number of decimals shown in the table. For $R=15$ and $\lambda=0.01,0.20$, we have already obtained, up to the shown precision, the four exact energy levels of Banerjee and Bhatnagar (1978), which correspond to the asymptotic condition $R=\infty$.

Table 2. Comparison of perturbative eigenvalues for very small boxes with exact eigenvalues for the lowest states. The first two levels are the perturbative ε_{+}^{s} and ε_{-}^{s} as given by equations (8). The second pair of levels are the corresponding exact ones.

	0.01		0.20		1.00	
0.1	123.3694016	123.3694016	123.3694020	123.3694020	123.3694036	123.3694036
	493.4788067	493.4788067	493.4788078	493.4788078	493.4788124	493.4788124
0.2	30.8399002	30.8399002	30.8399065	30.8399065	30.8399328	30.8399328
	123.3644024	123.3644024	123.3644198	123.3644198	123.3644928	123.3644928
0.3	13.7019040	13.7019040	13.7019357	13.7019357	13.7020688	13.7020688
	54.8184195	54.8184195	54.8185073	54.8185073	54.8188769	54.8188769
0.4	7.7001760	7.7001760	7.7002760	7.7002760	7.7006972	7.7006972
	30.8199123	30.8199123	30.8201898	30.8201898	30.8213583	30.8213583
0.5	4.9184694	4.9184694	4.9187139	4.9187139	4.9197430	4.9197430
	19.7039017	19.7039017	19.7045795	19.7045795	19.7074336	19.7074336
0.6	3.4034207	3.4034207	3,403 9285	3.4039285	3.4060661	3.4060660
	13.6569508	13.6569508	13.6583576	13.6583576	13.6642800	13.6642800
0.7	2.4857168	2.4857168	2.4866605	2.4866605	2.4906305	2.4906305
	10.0018418	10.0018418	10.0044517	10.0044517	10.0154351	10.0154351
0.8	1.8857652	1.8857652	1.8873826	1.8873826	1.8941795	1.8941793
	7.6202616	7.6202616	7.6247233	7.6247233	7.6434873	7.6434872
0.9	1.4699778	1.4699778	1.4725857	1.4725856	1.4835242	1.4835230
	5.9779464	5.9779464	5.9851143	5.9851143	6.0152237	6.0152231
1.0	1.1679680	1.1679681	1.1719795	1.1719793	1.1887486	1.1887435
	4.7934845	4.7934845	4.8044537	4.8044535	4.8504358	4.8504332

Table 3. Comparison of perturbative eigenvalues for boxes whose walls are in the vicinity of inflection points of the potential with exact eigenvalues for lowest states. The central column for each λ corresponds to the inflection point of the potential; the other two correspond to neighbouring values.

1	0.0025				0.01		0.20		
R	7.50	8.16	8.50	3.50	4.08	4.50	0.80	0.91	1.00
$\varepsilon_{0}^{(+1}$	-18.533 47	22.05830	-23.86617	- 2.05208	-3.41881	-4.492 13	1.88738	1.42855	1.17198
$\varepsilon_{1}^{(-)}$	-18.53347	-22.05830	-23.86617	-2.05088	-3.41880	-4.492 13	7.62472	5.81165	4.80445
ε_{1}^{i}	-18.532 29	-22.05807	-23.866 15	-2.029 85	-3.41312	4.49135	0.24492	0.26689	0.27292
$\varepsilon_{2}^{(+)}$	-14.45052	-17.853 03	- 19.6195	-0.25170	-1.11969	-2.000 14	17.25596	13.20551	10.96384
$\varepsilon_{i}^{(-)}$	-14.450 52	-17.85303	19.6195	-0.017 07	-1.10268	-1.999 03	30.74713	23.56571	19.59657
ε_{2}^{i}	-14.44129	-17.850 26	$\cdots 19.6186$	0.08286	-1.032 49	-1.974 14	1.99240	1.61703	1.45082
$\varepsilon_{4}^{(+)}$	-11.239 49	-14.50110	-16.2138	0.90572	0.07751	-0.40002	48.09493	36.88835	30.69842
$\varepsilon_{5}^{(-)}$	- 11.23949	-14.50110	-16.2138	1.91688	0.54038	-0.265 64	69.29855	53.17248	44.26834
ε_{3}^{7}	-11.20798	-14.489 28	-16.2084	1.47486	0.63756	-0.14976	10.82384	9.17886	8.52317

We can see from table 1 that for small λ, and R not too large, e.g. $R=15$, we have already obtained the degeneracy by pairs of the even and odd lowest levels, as it should be. We also note that for small R the energy levels are quite independent of the λ considered, due to the dominance, in this case, of the quadratic term of the Hamiltonian.

In table 2, we show in the first column, for each λ, the first two energy levels for several R as obtained from the perturbative expansion given by equation (8). These values should be compared with the corresponding exact ones shown in the second column. We observe the monotonic increase of the energy as the size of the box diminishes, due to the dominance of the kinetic energy term. We call attention to the fact that the perturbative and exact values almost coincide for relatively small values of R and λ.

In table 3, we show the lowest perturbative eigenvalues of the potential having the cut-off at its inflection points, as obtained from expression (11), for comparison with the eigenvalues associated with the two exact parity states. As an illustration of the behaviour of the levels, we also show them for two neighbouring boxes. We see that for very small values of λ (which correspond to relatively large values of the box) this 'perturbation' method gives very good results, especially for the first two levels. For $\lambda=0.20$, which corresponds to a small box, the results are bad and in this case the perturbative expansion (8) has proved better, as shown in table 2.

Table 4. Comparison of perturbative eigenvalues for boxes whose walls are at the minima of the potential with exact eigenvalues for lowest states.

λ	R_{m}	ε_{0}^{m}	$\varepsilon_{0}^{(+)}$	$\varepsilon_{1}^{(-)}$
0.0025	14.1	-47.97611712	-47.97632376	-47.97632376
0.01	7.1	-10.57865952	-10.58053279	-10.58053279
0.02	5.0	-4.417474691	-4.423476899	-4.423476718
0.03	4.1	-2.404667196	-2.417160572	-2.416959822
0.04	3.5	-1.424059111	-1.448297740	-1.442983384
0.05	3.2	-0.8540675953	-0.904323755	-0.8722906617
0.07	2.7	-0.2379472151	-0.3833520439	-0.2057421169
0.10	2.2	0.1691162735	-0.0779165382	0.3914530158
0.15	1.8	0.3998630023	0.1731026141	1.0950805124
0.20	1.6	0.4434458252	0.3503046718	1.6879582983

In table 4, we show the lowest perturbative eigenvalue associated with the boxes passing through the minimum of the potential as obtained from expression (13), for comparison with the two lowest eigenvalues associated with the two exact parity states. As the difference between the perturbative and exact levels is proportional to $\lambda^{3 / 2}$, we see that the levels tend to coincide as λ becomes smaller and smaller.

In table 5, we show the perturbative energy levels for very large boxes as given by expression (14), for comparison with the exact values and with the asymptotic values given in Abramowitz and Stegun (1971). We have taken $R=15$ for the biggest box representing an asymptotic condition. As the difference between the perturbative and exact values is proportional to λ^{3}, we see that the levels tend to coincide as λ decreases.

As a general final comment, we should stress that all the perturbative solutions discussed here cannot be valid for larger values of λ or for highly excited states. This is

Table 5. Comparison of perturbative eigenvalues for very large boxes with exact eigenvalues for lowest states. The last two columns show values from Banerjee and Bhatnagar (1978).

λ	$\varepsilon_{v}^{!}$	ε_{0}^{i+1}	ε_{1}^{i-1}	ε_{0}	ε_{1}
0.0025	-49.29414819	-49.29414819	-49.29414819	-	-
0.01	-11.79797277	-11.7979757	-11.7979757	-11.79797570	-11.79797570
0.02	-5.553211417	-5.553236	-5.5532362	-5.553236208	-5.553236207
0.03	-3.475275831	-3.475365	-3.4753637	-3.475365945	-3.475363775
0.04	-2.439166011	-2.439438	-2.439346	-2.439438882	-2.439345769
0.05	-1.819881957	-1.820789	-1.819933	-1.820788948	-1.819933201
0.07	-1.117505431	-1.12408	-1.114031	-1.124027249	-1.114031478
0.10	-0.6008481701	-0.63275	-0.57653	-0.6327464185	-0.5765295655
0.15	-0.2191251925	-0.30208	-0.12279	-0.3020837093	-0.1227898883
0.17	-0.1361771457	-0.23171	-0.00318	-0.2317115381	-0.0031815516
0.20	-0.049713024	-0.15412	+0.14277	-0.1541248290	+0.1427651020

mainly due to the fact that the eigenfunctions of the several unperturbed systems considered do not satisfy in practice the proper boundary condition at the centre of the potential. Had we taken the eigenfunctions which satisfy this condition, we would obtain perturbative solutions which are good also for larger values of λ. Clearly, we should distinguish between states of different parity which are no longer degenerate. We can use such eigenfunctions as trial ones for an alternative variational analysis of the problem. In fact, an obvious suggestion is to use the eigenfunctions associated with the double oscillator in both situations of free and boxed systems.

Appendix

We give below explicit expressions for the sums $S_{i}, i=1,2, \ldots, 11$, appearing in the expression (8).

$$
\begin{aligned}
& S_{1}=\sum_{M}\left(N\left|x^{2}\right| M\right)^{2} /\left(M^{2}-N^{2}\right) \\
& S_{2}=\sum_{M}^{\prime}\left(N\left|x^{2}\right| M\right)\left(M\left|x^{4}\right| N\right) /\left(M^{2}-N^{2}\right) \\
& S_{3}=\sum_{M}^{\prime}\left(N\left|x^{4}\right| M\right)^{2} /\left(M^{2}-N^{2}\right) \\
& S_{4}=\sum_{\substack{M, P \\
M \neq P}}\left(N\left|x^{2}\right| P\right)\left(P\left|x^{2}\right| M\right)\left(M\left|x^{2}\right| N\right) /\left(M^{2}-N^{2}\right)\left(P^{2}-N^{2}\right) \\
& S_{5}=\sum_{M}^{\prime}\left(N\left|x^{2}\right| M\right)^{2}\left(M\left|x^{2}\right| M\right) /\left(M^{2}-N^{2}\right)^{2} \\
& S_{6}=\sum_{\substack{M, P \\
M \neq P}}\left(N\left|x^{2}\right| P\right)\left(P\left|x^{2}\right| M\right)\left(M\left|x^{4}\right| N\right) /\left(P^{2}-N^{2}\right)\left(M^{2}-N^{2}\right) \\
& S_{7}=\sum_{\substack{M, P \\
M \neq P}}\left(N\left|x^{2}\right| P\right)\left(P\left|x^{4}\right| M\right)\left(M\left|x^{2}\right| N\right) /\left(P^{2}-N^{2}\right)\left(M^{2}-N^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S_{8}=\sum_{M}^{\prime}\left(N\left|x^{2}\right| M\right)\left(M\left|x^{2}\right| M\right)\left(M\left|x^{4}\right| N\right) /\left(M^{2}-N^{2}\right)^{2} \\
& S_{9}=\sum_{M}^{\prime}\left(N\left|x^{2}\right| M\right)^{2}\left(M\left|x^{4}\right| M\right) /\left(M^{2}-N^{2}\right)^{2} \\
& S_{10}=\sum_{M}^{\prime}\left(N\left|x^{2}\right| M\right)^{2} /\left(M^{2}-N^{2}\right)^{2} \\
& S_{11}=\sum_{M}^{\prime}\left(N\left|x^{2}\right| M\right)\left(M\left|x^{4}\right| N\right) /\left(M^{2}-N^{2}\right)^{2}
\end{aligned}
$$

References

Abramowitz M and Stegun I A 1971 Handbook of Mathematical Functions (New York: Dover) Banerjee K and Bhatnagar S P 1978 Phys. Rev. D 184767
Castilho Alcarás J A and Leal Ferreira P 1975 Lett. Nuovo Cimento 14500
Killingbeck J 1981 J. Phys. A: Math. Gen. 141005

[^0]: † Work partially supported by FINEP, Brasil, under contract B/76/80/146/00/00.
 § On leave of absence from Instituto de Física, University of México, with financial support of FAPESP, São Paulo, Brasil.

