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Quantum quadratic-attractive plus quartic-repulsive 
potential in a box? 

V C Aguilera-NavarroS, E Ley KooS5, A H  ZimermanJ: and H Iwamotoll 
$ Instituto de Fisica Teorica, Rua Pamplona, 145-CEP 01405-SHo Paulo, B r a d  
I/ Departamento de Fisica da FUEL, Londrina, Brasil 

Received 20 May 1981 

Abstract. The solution of the Schrodinger equation for the two-well oscillator in a 
symmetric box is formulated exactly, and high-accuracy numerical results are obtained for 
the lowest states. Perturbative solutions for boxes whose walls are (i) fairly close to each 
other, (ii) in the vicinity of the inflection points of the potential, (iii) at the position of the 
minima of the potential, and (iv) very far from each other are also obtained and compared 
with the exact ones. 

1. Introduction 

Some time ago Banerjee and Bhatnagar (1978) investigated the two-well oscillator 

V(x) = -$kx2+$Ax4 (1) 

by a non-perturbative method and in the WKB approximation. They also argued why 
the problem does not admit of a straightforward perturbative solution. Recently, 
Killingbeck (1981) has considered the same problem. In contrast, we show in the 
present paper that the modified problem of the two-well oscillator in a symmetric box, 
with the potential of equation (1) inside the box (lxl<R) and an infinite potential 
outside the box (1x1 > R), admits of an exact solution as well as perturbative solutions. 

We use the reduced Hamiltonian 

H ( k = 1 , A ) = t ( p 2 - ~ 2 + A ~ 4 )  (2) 

$(lxl= R )  = 0 (3a) 

and impose the boundary condition on the wavefunctions 

at the position of the walls. Furthermore, since the Hamiltonian is even under 
reflection, H(x) = H(-x), its eigenfunctions have a well defined parity. We can restrict 
the problem to the interval 0 s x 6 R, by introducing the corresponding boundary 
condition at the origin, 
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and 

d,' )(s = 0 )  = 0, (3c) 

An exact solution of the eigenvalue problem can be formulated by using the 
for the even and odd wavefunctions, respectively. 

expansions of the wavefunctions, 

(4a 1 

in  terms of the complete orthonormal bases of eigenfunctions of the free particle in the 
box. 

( 5 a )  

( 5 b )  

in +) = q5yJ(x) = R-"* cos[(2n + l)vx/2R], 

in - ) = q 5 k - j  (x)  = R-"' sin(nvx/R), 

which obviously satisfy the boundary conditions of equations (3a), and (3b )  and (3c) ,  
respectively. Then the expansion coefficients c:: and the eigenvalues E:' are obtained 
from the diagonalisation of the corresponding matrices of the Hamiltonian, 
( n '  rt lHln * ), which are explicitly constructed in Q 2. In principle, the sums in equations 
( 4 n )  and (4h) involve an infinite number of terms, but in practice we can use a finite 
number of them and test the convergence and accuracy of the numerical results. 

In 5 3, we develop perturbative solutions for boxes whose walls are (i) fairly close to 
each other, R < 1, taking the free particle in the box as the unperturbed system, (ii) in 
the vicinity of the points of inflection of the potential, R = (6A)-'/', taking the linear 
potential as the unperturbed system, (iii) at the position of the minimum of the 
potential, R = ( 2 A ) - * / ' ,  taking the half-oscillator potential as the unperturbed system, 
and (iv) very far from each other, R > > A  -'I2, taking the harmonic oscillator potential as 
the unperturbed system. 

Our numerical results are presented in $4 .  The exact results illustrate how the 
degeneracy of the lowest states, by pairs, sets in as the separation of the walls is 
increased, especially for very small values of A. Comparison of the perturbative and 
exact solutions allows us to ascertain the validity of the former. 

2. Formulation of the exact solution 

It is straightforward to construct the matrices of the Hamiltonian equation (2) in the 
bases of equations ( 5 a )  and (5b) ,  respectively, 

( n '  +lHin + i ={(2n + 1)2n2/8R2-[Eb-12n + l)-*v-']R' 

+$[$-4(2n + 1 )  ' v  2+24(2n+l)~4v-4]hR4}6,~ ,  

+ [[(tl n ' + 11 - ' - k n - n 7 -2](-1 "'v- 'R 

cn '+ i r 4  - ( n  -n')-4]24.rr-4}5(-i)n-"'~~4n(i-~n.n)r (6a) 

- { [ (n  + n' + 1)-* - ( n  - ~ ' ) - ' ] 4 v - ~  
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(n’-jHln - )  ={n2.rr2/2R2-[%-(2n)-2.rr-2]RZ 

+ f[$ - 4 ( 2 n y 2 K 2  + 24(2n)-4~-4]AR4}Sfl ,n 

+[I[(n + n ’ ) - 2 - ( n  -n ’ ) -2 ] ( -1 )” -” ’~-2R2  

- {[(n + r ~ ’ ) - ~  - ( n  - r ~ ’ ) - ~ ] 4 . r r - ~  - [ ( n  + nr)-4 - ( n  - n ’ ) - 4 ] 2 4 ~ - 4 }  

Xi(-l)”-”’AR41)(1 -S,*,). (6b)  

In these equations, it is easy to recognise the diagonal and non-diagonal contribu- 

In the matrix representation, the solution of the eigenvalue problem is reduced to 
tions of the kinetic energy, quadratic and quartic terms in the Hamiltonian. 

the solution of the secular equations 

det IH$A - E ( * ) S , , ~ ~  1 = 0. (7) 
However, as already mentioned in P 1, the matrices are of infinite dimension and in 
practice we work with submatrices of finite dimensions, testing the convergence and 
accuracy of the numerical results as the dimensions are increased. 

3. Perturbative solutions 

The two-well potential, equation ( l ) ,  has zeros at x =O,  *(k/A)”2, minima at x = 
*(k/2A)”’, and inflection points at x = *(k/6A)”’. Next, we develop perturbative 
solutions for boxes whose walls are located in the vicinity of such points. We pay special 
attention to the interesting situation of very small values of A. 

3.1. Very small boxes, R < 1 

We take the free particle in the box, i.e. the kinetic energy term in equation (2)  and its 
eigenfunctions of equations (5a)  or (5b), as the unperturbed system, so that the 
potential itself, equation ( l ) ,  is the perturbation. The matrix elements of equations (6a )  
and (6b)  can be used directly to obtain the explicit forms of the Rayleigh-Schrodinger 
perturbation expansion 

E L  = N2.rr2/8R ’ - (i - N - 2 ~ - 2 ) R  + $ ( f  - 4N-2.rr-2 + 24N-4.rr-4)AR4 

- ~ S ~ I P R ~ +  1 6 A S Z ~ - ~ R ~ + [ 1 6 ( i -  N - ’ ~ - ~ ) . r r - ~ S l o  

- ~ T - ’ O S ~ - ~ T - ~ S ~  - ~ ~ A ’ T - ~ S ~ ] R ~ ~  

+ 8[4(2s6 + &).rr-’ + 8s8 + s g  - (i -4N-’r-’+ 24N-4.rr-4)Slo 

- ~ ~ ( ~ - N - ’ T - ’ ) S ~ ~ ] A ~ - ~ R ~ ~  

where 

2n + 1 for even-parity states, n = 0 , 1 , 2 , .  . . , 
= 2n for odd-parity states, n = 1 , 2 , 3 , .  * .  . 

The Si ( i  = 1 , .  . . , 1 1 )  are defined in the Appendix. In the expression (8)  we have kept 
terms up to R ” .  
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3.2. Boxes whose walls are in the vicinity of the inflection points, R = (6A)- 

In this case, we work in the interval -R < x  < 0, and make the change of variable 
Y = .r + R. Then the Hamiltonian becomes 

V C Aguilera-Navarro et a1 

where 

a ( A ,  R )  = $(R* -AR41, 

p3(A ,  R )  =2R -4AR’, 

V j A ,  Ri= 1 -6AR2,  

For fixed values of A and R, the term in CY is fixed and gives the value of the potential at 
the position of the walls. The next two terms in equation ( 9 a )  correspond to the 
Hamiltonian for a linear potential, which we take as the unperturbed system. Then the 
perturbation includes the quadratic, cubic and quartic terms. 

For small values of A,  the boxes under consideration are rather large, and the 
degeneracy of the lowest pairs of even-odd states already appears. Thus, we will refer 
to both members of the pair simultaneously. Also, the interval of y can be taken as 
infinite since its values go from 0 to R >> 1. Then the eigenfunctions of the unperturbed 
system are the regular Airy functions Ai@y - 2 ~ ( ~ ) / p * )  (Abramowitz and Stegun 
1971), subject to the boundary condition of vanishing at the wall, i.e. for y = 0 which 
determines the unperturbed eigenvalues, 

( l o a )  

in terms of the zeros of such functions, Let us recall that those zeros are negative, so that 
the eigenvalues are positive. Notice that in practice these Airy functions also satisfy 
both boundary conditions at the centre of the box, equations (3b) and (3c), for 
~ = R + x ,  

The coefficient y of the quadratic term is very close to zero, while the coefficients of 
the cubic and quartic terms are also very small, being of order A”* and A, respectively. 
Therefore, we limit our calculation to first order in the perturbation, for which we need 
the expectation values of the second, third and fourth powers of y with the Airy 
functions. We take these directly from (Castilho Alcards and Leal Ferreira 1975) 

LO8 
F,, -- 4p2n,,. 

(v’),, = 8(n,,/p)’ /15, ( l o b )  

Then we obtain the perturbative solutions 
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3.3. Boxes whose walls are at the position of the minima, R = (2A)-1/2 

This time we make the change of variable z = x - (2A)-’/’, and the Hamiltonian 
becomes 

H = -$(d’/dz’)--$[z +(~A)-’/’]’+~A[Z + (2A)-”2]4 

= -1/8A -$(d2/dz2) + z’+ ( 2 h ) ’ ’ ’ ~ ~  +$Azf. (12) 
Again, the first term is constant and corresponds to the value of the potential at its 
minima. The next two terms correspond to a harmonic oscillator of frequency &, 
which here and in § 3.4 we take as the unperturbed system. Then the perturbation 
consists of the anharmonic cubic and quartic terms. Notice that the linear term drops 
out because the origin has been shifted to the position of the minimum of the potential. 
Also, for small values of A the boxes under consideration are even larger than those in 
§ 3.2, so that the degeneracy of the lowest pairs of even-odd states is established, and 
the interval of the variable extends from z = -(2A)-’l2 + -00 to z = 0. 

The boundary condition, equation (3a) ,  when the walls are at the position of the 
minima corresponds to $(z  = 0) = 0, which means that we have to choose the odd 
functions of the harmonic oscillator as the unperturbed wavefunctions. Both boundary 
conditions at the centre of the box, equations (36) and (3c), are also satisfied in practice 
by such functions because their gaussian exponential factors tend to vanish at z = 
-(2A)-1’2+ --CO. Furthermore, the matrix elements of the perturbation can be directly 
calculated. 

Since the coefficients of the cubic and quartic terms in equation (12) are of order A ‘ I2 

and A ,  respectively, we have to be consistent in the inclusion of the terms in the 
perturbation series. Thus, in order to include all the terms of order A, we take the 
quartic terms in first order of perturbation theory but the cubic term up to second order. 
This can be appreciated in the successive terms of the following expression for the 
lowest states: 

e m  = -1/8A + 3 & / 2 - 4 ( 2 A / ~ ) ’ / ~ 2 - ~ / ~ + 1 5 A / 1 6 -  1.958 486 406A 

=-1/8A +2.121320344-1.897 699993&-1.020986406A, (13) 

to be compared with E!,+) 2: ~ i - )  for R = (2A)-’/2. 

3.4. Very large boxes, R >>A-’” 

In this case, the Hamiltonian in the form of equation (12), with the variable in the 
interval from z = -(2A)-’l2 + --CO to z = R + 00, allows us to choose the complete 
harmonic oscillator as the unperturbed system. Again, the corresponding wavefunc- 
tions in practice satisfy the boundary conditions equations (3a), (36) and (3c), because 
of their gaussian exponential factors. In addition, since these wavefunctions and also 
the cubic and quartic terms in the perturbation have well defined parities, the cor- 
responding selection rules automatically eliminate some terms in the perturbation 
series. For instance, in the energy of the lowest states including all the. terms of order A ’, 
E ‘  = -1/8A + $&+ 3A/16 - 11A/16 - 21A2/2’&+ 171A2/2% -465A2/2’& 

= -1/8A + a - $ A  +(9/8&)A2, (14) 

the cubic term does not contribute in first or third order by itself, but it does lower the 
energy in second and fourth order, while the quartic term makes a positive contribution 
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in first order and a negative one in second order. In addition, both the cubic and quartic 
terms combine the products of two matrix elements of the former with one of the latter 
to make a positive contribution in third order. The energies in equation (14) are to be 
compared with E ~ C ’  ‘=E \ - )  for R > > A - 1 f 2 .  

4. Numerical results and discussion 

In this section, we discuss illustrative samples of the numerical results obtained with the 
several approximations in each region in which the original problem was separated. 
Comparison with the exact (variational) results is also made through the tables. 

In table 1, we present the exact results for the first six energy levels, for several 
values of R and A. We have used different dimensions for the matrices (6) to be 
diagonalised, namely, for R ~1 and A =0.01, 0.20 we diagonalised matrices of 
dimensions up to 10; for R > 1, we diagonalised matrices of dimensions up to 35, for all 
values of A considered; finally, for R s 0.5 and A = 1, the greatest dimension was taken 
as 25. We used different dimensions in order to ensure convergence of the eigenvalues 
up to the number of decimals shown in the table. For R = 15 and A = 0.01, 0.20, we 
have already obtained, up to the shown precision, the four exact energy levels of 
Banerjee and Bhatnagar (1978), which correspond to the asymptotic condition R = 00. 

Table 2. Comparison of perturbative eigenvalues for very small boxes with exact eigen- 
values for the lowest states. The first two levels are the perturbative E:  and E:  as given by 
equations (8). The second pair of levels are the corresponding exact ones. 

0.01 0.20 1 .oo 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 .o 

123.369 4016 
493.478 8067 

30.839 9002 
123.364 4024 

13.701 9040 
54.818 4195 

7.700 1760 
30.819 9123 

4.918 4694 
19.703 9017 

3.403 4207 
13.656 9508 

2.485 7168 
10.001 8418 

1.885 7652 
7.620 2616 

1.469 9778 
5.977 9464 

1.167 9680 
4.793 4845 

123.369 4016 
493.478 8067 

30.839 9002 
123.364 4024 

13.701 9040 
54.818 4195 

7.700 1760 
30.819 9123 

4.918 4694 
19.703 9017 

3.403 4207 
13.656 9508 

2.485 7168 
10.001 8418 

1.885 7652 
7.620 2616 

1.469 9778 
5.977 9464 

1.167 9681 
4.793 4845 

123.369 4020 
493.478 8078 

30.839 9065 
123.364 4198 

13.701 9357 
54.818 5073 

7.700 2760 
30.820 1898 

4.918 7139 
19.704 5795 

3.403 9285 
13.658 3576 

2.486 6605 
10.004 4517 

1.887 3826 
7.624 7233 

1.472 5857 
5.985 1143 

1.171 9795 
4.804 4537 

123.369 4020 
493.478 8078 

30.839 9065 
123.364 4198 

13.701 9357 
54.818 5073 

7.700 2760 
30.820 1898 

4.918 7139 
19.704 5795 

3.403 9285 
13.658 3576 

2.486 6605 
10.004 4517 

1.887 3826 
7.624 7233 

1.472 5856 
5.985 1143 

1.171 9793 
4.804 4535 

123.369 4036 
493.478 8124 

30.839 9328 
123.364 4928 

13.702 0688 
54.818 8769 

7.700 6972 
30.821 3583 

4.919 7430 
19.707 4336 

3.406 0661 
13.664 2800 

2.490 6305 
10.015 4351 

1.894 1795 
7.643 4873 

1.483 5242 
6.015 2237 

1.188 7486 
4.850 4358 

123.369 4036 
493.478 8124 

30.839 9328 
123.364 4928 

13.702 0688 
54.818 8769 

7.700 6972 
30.821 3583 

4.919 7430 
19.707 4336 

3.406 0660 
13.664 2800 

2.490 6305 
10.015 4351 

1.894 1793 
7.643 4872 

1.483 5230 
6.015 2231 

1.188 7435 
4.850 4332 
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We can see from table 1 that for small A, and R not too large, e.g. R = 15, we have 
already obtained the degeneracy by pairs of the even and odd lowest levels, as it should 
be. We also note that for small R the energy levels are quite independent of the A 
considered, due to the dominance, in this case, of the quadratic term of the Hamil- 
tonian. 

In table 2, we show in the first column, for each A, the first two energy levels for 
several R as obtained from the perturbative expansion given by equation (8). These 
values should be compared with the corresponding exact ones shown in the second 
column. We observe the monotonic increase of the energy as the size of the box 
diminishes, due to the dominance of the kinetic energy term. We call attention to the 
fact that the perturbative and exact values almost coincide for relatively small values of 
R and A. 

In table 3, we show the lowest perturbative eigenvalues of the potential having the 
cut-off at its inflection points, as obtained from expression (1 l), for comparison with the 
eigenvalues associated with the two exact parity states. As an illustration of the 
behaviour of the levels, we also show them for two neighbouring boxes. We see that for 
very small values of A (which correspond to relatively large values of the box) this 
‘perturbation‘ method gives very good results, especially for the first two levels. For 
A =0.20, which corresponds to a small box, the results are bad and in this case the 
perturbative expansion (8) has proved better, as shown in table 2. 

Table4. Comparison of perturbative eigenvalues for boxes whose walls are at the minima of 
the potential with exact eigenvalues for lowest states. 

h R m  €2 E!j+) E \-) 

0.0025 14.1 -47.976 117 12 -47.976 323 76 -47.976 323 76 
0.01 7.1 -10.578 659 52 -10.580 532 79 -10.580 532 79 
0.02 5.0 -4.417 474 691 -4.423 476 899 -4.423 476 718 
0.03 4.1 -2.404 667 196 -2.417 160 572 -2.416 959 822 
0.04 3.5 -1.424 059 111 -1.448 297 740 -1.442983 384 
0.05 3.2 -0.854 067 5953 -0.904 323 755 -0.872 290 6617 
0.07 2.7 -0.237 947 2151 -0.383 352 0439 -0.205 742 1169 
0.10 2.2 0.169 116 2735 -0.077 916 5382 0.391 453 0158 
0.15 1.8 0.399 863 0023 0.173 102 6141 1.095 080 5124 
0.20 1.6 0.443 445 8252 0.350 304 6718 1.687 958 2983 

In table 4, we show the lowest perturbative eigenvalue associated with the boxes 
passing through the minimum of the potential as obtained from expression (13), for 
comparison with the two lowest eigenvalues associated with the two exact parity states. 
As the difference between the perturbative and exact levels is proportional to A 3’2, we 
see that the levels tend to coincide as A becomes smaller and smaller. 

In table 5, we show the perturbative energy levels for very large boxes as given by 
expression (14), for comparison with the exact values and with the asymptotic values 
given in Abramowitz and Stegun (1971). We have taken R = 15 for the biggest box 
representing an asymptotic condition. As the difference between the perturbative and 
exact values is proportional to A 3, we see that the levels tend to coincide as A decreases. 

As a general final comment, we should stress that all the perturbative solutions 
discussed here cannot be valid for larger values of A or for highly excited states. This is 
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Table 5. Comparison of perturbative eigenvalues for very large boxes with exact eigen- 
values for lowest states. The last two columns show values from Banerjee and Bhatnagar 
(1978). 

A 

.- 

0.0025 
0.01 
0.02 
0.03 
0.04 
0.05 
0.07 
0.10 
0.15 
0.1’ 
0.20 

~~ 

F i  E r 1  
~ _ _ _ I _  -__ 

-49.294 148 19 
-11.797 972 11 

-49.294 148 19 
-11.797 975 7 

-5.553 211 411 -5.553 236 
-3.475 275 831 -3.475 365 
-2.439 166 011 -2.439 438 
-1.819 881 957 --1.820 789 
-1,117505431 -1 12408 
-0.600 848 1701 -0.632 75 
-0.219 125 1925 -0.302 08 
-0.136 177 1457 -0.231 71 
-0.049 713 024 -0.154 12 

E : - ’  

-49.294 148 19 
-11.7979751 

-5.553 236 2 
-3.475 363 7 
-2.439 346 
-1.819 933 
-1,114031 
-0.576 53 
-0.122 79 
-0.003 18 
t0.142 11 

- 
-11.797 975 70 

-5.553 236 208 
-3.475 365 945 
-2.439 438 882 
-1.820 788 948 
-1.124 027 249 
-0.632 746 4185 
-0.302 083 7093 
-0.231 711 5381 
-0.154 124 8290 

- 
-11.797 975 70 

-5.553 236 207 
-3.475 363 775 
-2.439 345 769 
-1.819 933 201 
-1.114031 478 
-0.576 529 5655 
-0.122 789 8883 
-0.003 181 5516 
+0.142 765 1020 

mainly due to the fact that the eigenfunctions of the several unperturbed systems 
considered do not satisfy in practice the proper boundary condition at the centre of the 
potential. Had we taken the eigenfunctions which satisfy this condition, we would 
obtain perturbative solutions which are good also for larger values of A. Clearly, we 
should distinguish between states of different parity which are no longer degenerate. 
We can use such eigenfunctions as trial ones for an alternative variational analysis of the 
problem. In fact, an obvious suggestion is to use the eigenfunctions associated with the 
double oscillator in both situations of free and boxed systems. 

Appendix 

We give below explicit expressions fcr the sums S,, i = 1,2, . . . , 11, appearing in the 
expression (8). 
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ss = 1’ (Nlx2(M)(M(x2(M)(Mlx41N)/(M2 - N2)2 

s9 = C‘ (NIxzIM)z(MIx41M)/(Mz -N2)2 

SI0  = 1’ (N(x21M)2/(M2 -N2)2 

SI1 = E’ (Njx21M)(Mjx41N)/(M2 -N2)2. 

M 

M 

M 

M 
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